Applicability of object-based storage
devices In parallel file systems

Pete Wyckoff
Ohio Supercomputer Center

pwl@osc.edu

HECIWG 21 aug 06



Vision

* Processors faster, disk densities up, but |10
rates flat

* | everage intelligent peripherals to improve
performance

* OSDs offer higher-level semantic interface

* Secure, direct access of storage by clients

* Our work
— Examine role of OSDs in parallel file systems
- Analyze trade-offs of using OSDs for various
aspects of parallel FSes
- Develop extensions required for efficient use of
OSDs in HPC parallel environments



Traditional Model OSD Model

Applications Applications
ystem Call Interface ystem Call Interface

File System File System
User Component User Component

t t
System Storage OSD Interface

I

I

I

I

I

I

File I
I

Management |
-

OSD Storage
Management

|
|
|




Mapping Data to Objects

* Block-based "objects" are 512 bytes
* OSD objects could be files
* For striped files, object is stripe, or stripe set?
* Collection feature allows grouping objects
- flush, remove, list, access control

* Delegating object creation to clients
— maybe using collection container

* When to create objects on create?
- lazy, preallocate




Metadata

* OSDs store attributes with objects

* How do parallel FS attributes map to these?
— uid, gid, perm, [acm]time, type
* mtime of object vs mtime of file
- size, link target, dfile count, dirent count, dir hint
— Xattrs
— metafile contents (datafile handles, distribution)
— directories themselves?
* Managing collective behavior
— object allocation, fsck, rebalancing
- use OSDs for metadata management too?
* Select objects by attribute
— data-introspective extensions



Other Topics

* Transport
— choice of RDMA direction based on usage intent
= link flow control and object information
— drive prefetch, write-behind by object info
* Caching
— attributes can be used to build DLM
- versioning FS
— dial-a-consistency approach
* Reliablility
— manage disk cache explicitly
— auto-checksum or auto-duplicate some objects



Implementation

* All in context of PVFS

* Open source, LGPL license, release often

e Maximize benefit to other researchers and
production implementations

* Particular components
— specific client-side transport protocol for OSDs
— separate out "meta"” and "data" operations
— metaserver may need to initiate "data” operations

* OSD implementations
- iSCSI initiatiors (IBM user, stock kernel)
- ISCSI target (IET kernel), stgt (user/kernel)
— OSD initiator (IBM, Intel)
— OSD target (Intel, IBM (no source))



application

application OSD command

PVFS_server_req PVFS_server_req read, write ISCSI .
TCP, IB

kernel VFS
TCP, GM, IB . TCP, GM, IB
sd (scsi disk) C D

N\




Conclusion

* Enable higher semantic interface to storage

* Avoid middle-box interference on data path

* Understand roles of clients, metadata servers,
|O servers, lock servers, etc in parallel FSes

* Cooperation welcomed



